Crystals (Jul 2024)

The Influence of a Commercial Few-Layer Graphene on Electrical Conductivity, Mechanical Reinforcement and Photodegradation Resistance of Polyolefin Blends

  • S. M. Nourin Sultana,
  • Emna Helal,
  • Giovanna Gutiérrez,
  • Eric David,
  • Nima Moghimian,
  • Nicole R. Demarquette

DOI
https://doi.org/10.3390/cryst14080687
Journal volume & issue
Vol. 14, no. 8
p. 687

Abstract

Read online

This work demonstrates the potentials of a commercially available few-layer graphene (FLG) in enhancing the electro-dissipative properties, mechanical strength, and UV protection of polyolefin blend composites; interesting features of electronic packaging materials. Polyethylene (PE)/ polypropylene (PP)/ FLG blend composites were prepared following two steps. Firstly, different concentrations of FLG were mixed with either the PE or PP phases. Subsequently, in the second step, this pre-mixture was melt-blended with the other phase of the blend. FLG-filled composites were characterized in terms of electrical conductivity, morphological evolution upon shear-induced deformation, mechanical properties, and UV stability of polyolefin blend composites. Premixing of FLG with the PP phase has been observed to be a better mixing strategy to attain higher electrical conductivity in PE/PP/FLG blend composite. This observation is attributed to the influential effect of FLG migration from a thermodynamically less favourable PP phase to a favourable PE phase via the PE/PP interface. Interestingly, the addition of 4 wt.% (~2 vol.%) and 5 wt.% (~2.5 vol.%) of FLG increased an electrical conductivity of ~10 orders of magnitude in PE/PP—60/40 (1.87 × 10−5 S/cm) and PE/PP—20/80 (1.25 × 10−5 S/cm) blends, respectively. Furthermore, shear-induced deformation did not alter the electrical conductivity of the FLG-filled composite, indicating that the conductive FLG network within the composite is resilient to such deformation. In addition, 1 wt.% FLG was observed to be sufficient to retain the original mechanical properties in UV-exposed polyolefin composites. FLG exhibited pronounced UV stabilizing effects, particularly in PE-rich blends, mitigating surface cracking and preserving ductility.

Keywords