Geosystems and Geoenvironment (Aug 2024)

Enriched lithospheric mantle storage of the Earth's missing niobium: New insights from alkaline rocks with superchondritic Nb/Ta ratios

  • Yan Yang,
  • Franz Neubauer,
  • Zheng Liu,
  • Guo-Chang Wang,
  • Shu-Cheng Tan,
  • Xiao-Hu He,
  • Chen-Yue Liang

Journal volume & issue
Vol. 3, no. 3
p. 100289

Abstract

Read online

Accessible silicate reservoirs on Earth (i.e., the depleted mantle and continental crust) are depleted in Nb relative to chondrites, as expressed by their subchondritic Nb/Ta ratios. Mixtures of continental crust and depleted mantle cannot produce chondritic Nb/Ta ratios; therefore, another geochemical reservoir with a superchondritic Nb/Ta ratio is necessary to balance the low Nb contents of the continental crust. We investigated alkaline igneous rocks with superchondritic Nb/Ta ratios (20.4–24.8). Their high Nb/Ta ratios were inherited from their lithospheric mantle source rather than being produced by magmatic differentiation. Geochemical data show that an enriched mantle domain with superchondritic Nb/Ta ratios can be produced by the interaction of subducted carbonate-rich sediment-derived melts with the lithospheric mantle, and the enriched lithospheric mantle is a potential superchondritic reservoir.

Keywords