Tecnura (Jul 2017)

Simulation of the styrene production process via catalytic dehydrogenation of ethylbenzene using CHEMCAD® process simulator

  • Amaury Pérez Sánchez,
  • Eddy Javier Pérez Sánchez,
  • Rutdali María Segura Silva

DOI
https://doi.org/10.14483/22487638.11499
Journal volume & issue
Vol. 21, no. 53
pp. 15 – 31

Abstract

Read online

Background: Process simulation has been extensively used in recent years to design, evaluate or optimize processes, systems and specific operations of the chemical industry and its related disciplines. Currently, CHEMCAD® constitute one of the most used process simulators because of the great number of chemical and petrochemical processes that can be simulated. Method: The simulation of the production process of styrene via catalytic dehydrogenation of ethyl-benzene is carried out by using the process simulator CHEMCAD® version 5.2.0, in order to determine the composition and mass flow-rate of each process involved in the production, as well as the main operating parameters of the equipment used. Two sensitivity studies were carried out: firstly, the influence of the temperature and pressure values applied at the LLV Separator on the amounts of ethyl-benzene and styrene to be obtained by the intermediate and top currents of this equipment; secondly, the influence of the operating pressure of the Distillation Column No. 1 (benzene-toluene column) on the quantity of ethyl-benzene and styrene obtained at the bottom stream. The simulating software MATLAB® version 7.8.0 was used to process the results obtained. Results: Around 9234.436 kg/h of styrene is obtained in the last distillation column with 99.6% purity. Additionally, it was found that the water is the main impurity found on this stream, which represents 0.35% of the weight. Conclusions: The LLV Separator must operate at a low temperature (5 – 10 ºC) and at a relatively high pressure (10 bar), whereas the Distillation Column No. 1 must work at a pressure near atmospheric (1.0 bar), or preferably under vacuum conditions in order to obtain the highest yields of styrene and ethyl-benzene.

Keywords