Nanomaterials (Jun 2022)

Light-Emitting Diodes Based on InGaN/GaN Nanowires on Microsphere-Lithography-Patterned Si Substrates

  • Liliia Dvoretckaia,
  • Vladislav Gridchin,
  • Alexey Mozharov,
  • Alina Maksimova,
  • Anna Dragunova,
  • Ivan Melnichenko,
  • Dmitry Mitin,
  • Alexandr Vinogradov,
  • Ivan Mukhin,
  • Georgy Cirlin

DOI
https://doi.org/10.3390/nano12121993
Journal volume & issue
Vol. 12, no. 12
p. 1993

Abstract

Read online

The direct integration of epitaxial III-V and III-N heterostructures on Si substrates is a promising platform for the development of optoelectronic devices. Nanowires, due to their unique geometry, allow for the direct synthesis of semiconductor light-emitting diodes (LED) on crystalline lattice-mismatched Si wafers. Here, we present molecular beam epitaxy of regular arrays n-GaN/i-InGaN/p-GaN heterostructured nanowires and tripods on Si/SiO2 substrates prepatterned with the use of cost-effective and rapid microsphere optical lithography. This approach provides the selective-area synthesis of the ordered nanowire arrays on large-area Si substrates. We experimentally show that the n-GaN NWs/n-Si interface demonstrates rectifying behavior and the fabricated n-GaN/i-InGaN/p-GaN NWs-based LEDs have electroluminescence in the broad spectral range, with a maximum near 500 nm, which can be employed for multicolor or white light screen development.

Keywords