eLife (Jun 2018)

Long-term antigen exposure irreversibly modifies metabolic requirements for T cell function

  • Marie Bettonville,
  • Stefania d'Aria,
  • Kathleen Weatherly,
  • Paolo E Porporato,
  • Jinyu Zhang,
  • Sabrina Bousbata,
  • Pierre Sonveaux,
  • Michel Y Braun

DOI
https://doi.org/10.7554/eLife.30938
Journal volume & issue
Vol. 7

Abstract

Read online

Energy metabolism is essential for T cell function. However, how persistent antigenic stimulation affects T cell metabolism is unknown. Here, we report that long-term in vivo antigenic exposure induced a specific deficit in numerous metabolic enzymes. Accordingly, T cells exhibited low basal glycolytic flux and limited respiratory capacity. Strikingly, blockade of inhibitory receptor PD-1 stimulated the production of IFNγ in chronic T cells, but failed to shift their metabolism towards aerobic glycolysis, as observed in effector T cells. Instead, chronic T cells appeared to rely on oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) to produce ATP for IFNγ synthesis. Check-point blockade, however, increased mitochondrial production of superoxide and reduced viability and effector function. Thus, in the absence of a glycolytic switch, PD-1-mediated inhibition appears essential for limiting oxidative metabolism linked to effector function in chronic T cells, thereby promoting survival and functional fitness.

Keywords