PLoS ONE (Jan 2015)

Visinets: a web-based pathway modeling and dynamic visualization tool.

  • Jozef Spychala,
  • Pawel Spychala,
  • Shawn Gomez,
  • Gabriel E Weinreb

DOI
https://doi.org/10.1371/journal.pone.0123773
Journal volume & issue
Vol. 10, no. 5
p. e0123773

Abstract

Read online

In this report we describe a novel graphically oriented method for pathway modeling and a software package that allows for both modeling and visualization of biological networks in a user-friendly format. The Visinets mathematical approach is based on causal mapping (CMAP) that has been fully integrated with graphical interface. Such integration allows for fully graphical and interactive process of modeling, from building the network to simulation of the finished model. To test the performance of Visinets software we have applied it to: a) create executable EGFR-MAPK pathway model using an intuitive graphical way of modeling based on biological data, and b) translate existing ordinary differential equation (ODE) based insulin signaling model into CMAP formalism and compare the results. Our testing fully confirmed the potential of the CMAP method for broad application for pathway modeling and visualization and, additionally, showed significant advantage in computational efficiency. Furthermore, we showed that Visinets web-based graphical platform, along with standardized method of pathway analysis, may offer a novel and attractive alternative for dynamic simulation in real time for broader use in biomedical research. Since Visinets uses graphical elements with mathematical formulas hidden from the users, we believe that this tool may be particularly suited for those who are new to pathway modeling and without the in-depth modeling skills often required when using other software packages.