An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency
A. Schlehahn,
A. Thoma,
P. Munnelly,
M. Kamp,
S. Höfling,
T. Heindel,
C. Schneider,
S. Reitzenstein
Affiliations
A. Schlehahn
Institut für Festkörperphysik, Technische Universität Berlin, 10623 Berlin, Germany
A. Thoma
Institut für Festkörperphysik, Technische Universität Berlin, 10623 Berlin, Germany
P. Munnelly
Institut für Festkörperphysik, Technische Universität Berlin, 10623 Berlin, Germany
M. Kamp
Technische Physik, Physikalisches Institut, Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg, 97074 Würzburg, Germany
S. Höfling
Technische Physik, Physikalisches Institut, Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg, 97074 Würzburg, Germany
T. Heindel
Institut für Festkörperphysik, Technische Universität Berlin, 10623 Berlin, Germany
C. Schneider
Technische Physik, Physikalisches Institut, Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Universität Würzburg, 97074 Würzburg, Germany
S. Reitzenstein
Institut für Festkörperphysik, Technische Universität Berlin, 10623 Berlin, Germany
We report on an electrically driven efficient source of indistinguishable photons operated at pulse-repetition rates f up to 1.2 GHz. The quantum light source is based on a p-i-n-doped micropillar cavity with integrated self-organized quantum dots, which exploits cavity quantum electrodynamics effects in the weak coupling regime to enhance the emission of a single quantum emitter coupled to the cavity mode. We achieve an overall single-photon extraction efficiency of (61 ± 11) % for a device triggered electrically at f = 625 MHz. Analyzing the suppression of multi-photon emission events as a function of excitation repetition rate, we observe single-photon emission associated with g(2)HBT(0) values between 0.076 and 0.227 for f ranging from 373 MHz to 1.2 GHz. Hong-Ou-Mandel-type two-photon interference experiments under pulsed current injection at 487 MHz reveal a photon-indistinguishability of (41.1 ± 9.5) % at a single-photon emission rate of (92 ± 23) MHz.