iScience (Sep 2023)

Mechanistic and functional aspects of the Ruminococcin C sactipeptide isoforms

  • Lama Shamseddine,
  • Clarisse Roblin,
  • Iris Veyrier,
  • Christian Basset,
  • Lisa De Macedo,
  • Anne Boyeldieu,
  • Marc Maresca,
  • Cendrine Nicoletti,
  • Gaël Brasseur,
  • Sylvie Kieffer-Jaquinod,
  • Élise Courvoisier-Dezord,
  • Agnès Amouric,
  • Philippe Carpentier,
  • Nathalie Campo,
  • Mathieu Bergé,
  • Patrice Polard,
  • Josette Perrier,
  • Victor Duarte,
  • Mickael Lafond

Journal volume & issue
Vol. 26, no. 9
p. 107563

Abstract

Read online

Summary: In a scenario where the discovery of new molecules to fight antibiotic resistance is a public health concern, ribosomally synthesized and post-translationally modified peptides constitute a promising alternative. In this context, the Gram-positive human gut symbiont Ruminococcus gnavus E1 produces five sactipeptides, Ruminococcins C1 to C5 (RumC1–C5), co-expressed with two radical SAM maturases. RumC1 has been shown to be effective against various multidrug resistant Gram-positives clinical isolates. Here, after adapting the biosynthesis protocol to obtain the four mature RumC2-5 we then evaluate their antibacterial activities. Establishing first that both maturases exhibit substrate tolerance, we then observed a variation in the antibacterial efficacy between the five isoforms. We established that all RumCs are safe for humans with interesting multifunctionalities. While no synergies where observed for the five RumCs, we found a synergistic action with conventional antibiotics targeting the cell wall. Finally, we identified crucial residues for antibacterial activity of RumC isoforms.

Keywords