Spanish Journal of Agricultural Research (Dec 2021)

Optimizing precision agricultural operations by standardized cloud-based functions

  • Markus Jackenkroll,
  • Gerassimos Peteinatos,
  • Benjamin Kollenda,
  • Robin Mink,
  • Roland Gerhards

DOI
https://doi.org/10.5424/sjar/2021194-17774
Journal volume & issue
Vol. 19, no. 4

Abstract

Read online

Aim of study: An approach to integrate knowledge into the IT-infrastructure of precision agriculture (PA) is presented. The creation of operation relevant information is analyzed and explored to be processed by standardized web services and thereby to integrate external knowledge into PA. The target is to make knowledge integrable into any software solution. Area of study: The data sampling took place at the Heidfeld Hof Research Station in Stuttgart, Germany. Material and methods: This study follows the information science’s idea to separate the process from data sampling into the final actuation through four steps: data, information, knowledge, and wisdom. The process from the data acquisition, over a professional data treatment to the actual application is analyzed by methods modelled in the Unified Modelling Language (UML) for two use-cases. It was further applied for a low altitude sensor in a PA operation; a data sampling by UAV represents the starting point. Main results: For the implemented solution, the Web Processing Service (WPS) of the Open Geospatial Consortium (OGC) is proposed. This approach reflects the idea of a function as a service (FaaS), in order to develop a demand-driven and extensible solution for irregularly used functionalities. PA benefits, as on-farm processes are season oriented and a FaaS reflects the farm’s variable demands over time by origin and extends the concept to offer external know-how for the integration into specific processes. Research highlights: The standardized implementation of knowledge into PA software products helps to generate additional benefits for PA.

Keywords