Frontiers in Immunology (May 2022)

Selective Targeting of IL-15Rα Is Sufficient to Reduce Inflammation

  • Dihia Meghnem,
  • Dihia Meghnem,
  • Mike Maillasson,
  • Mike Maillasson,
  • Mike Maillasson,
  • Isabelle Barbieux,
  • Isabelle Barbieux,
  • Sébastien Morisseau,
  • Sébastien Morisseau,
  • Sébastien Morisseau,
  • Dalloba Keita,
  • Dalloba Keita,
  • Yannick Jacques,
  • Yannick Jacques,
  • Agnès Quéméner,
  • Agnès Quéméner,
  • Erwan Mortier,
  • Erwan Mortier,
  • Erwan Mortier

DOI
https://doi.org/10.3389/fimmu.2022.886213
Journal volume & issue
Vol. 13

Abstract

Read online

Cytokines are crucial molecules for maintaining the proper functioning of the immune system. Nevertheless, a dysregulation of cytokine expression could be involved in the pathogenesis of autoimmune diseases. Interleukin (IL)-15 is a key factor for natural killer cells (NK) and CD8 T cells homeostasis, necessary to fight cancer and infections but could also be considered as a pro-inflammatory cytokine involved in autoimmune inflammatory disease, including rheumatoid arthritis, psoriasis, along with tumor necrosis factor alpha (TNF-α), IL-6, and IL-1β. The molecular mechanisms by which IL-15 exerts its inflammatory function in these diseases are still unclear. In this study, we generated an IL-15-derived molecule called NANTIL-15 (New ANTagonist of IL-15), designed to selectively inhibit the action of IL-15 through the high-affinity trimeric IL-15Rα/IL-2Rβ/γc receptor while leaving IL-15 signaling through the dimeric IL-2Rβ/γc receptor unaffected. Administrating of NANTIL-15 in healthy mice did not affect the IL-15-dependent cell populations such as NK and CD8 T cells. In contrast, we found that NANTIL-15 efficiently reduced signs of inflammation in a collagen-induced arthritis model. These observations demonstrate that the inflammatory properties of IL-15 are linked to its action through the trimeric IL-15Rα/IL-2Rβ/γc receptor, highlighting the interest of selectively targeting this receptor.

Keywords