IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (Jan 2021)

Orthogonal Subspace Projection Target Detector for Hyperspectral Anomaly Detection

  • Chein-I Chang,
  • Hongju Cao,
  • Meiping Song

DOI
https://doi.org/10.1109/JSTARS.2021.3068983
Journal volume & issue
Vol. 14
pp. 4915 – 4932

Abstract

Read online

Orthogonal subspace projection (OSP) is a versatile hyperspectral imaging technique which has shown great potential in dimensionality reduction, target detection, spectral unmixing, etc. However, due to its inherent requirement of prior target knowledge, OSP has not been explored in anomaly detection. This article takes advantage of an unsupervised OSP-based algorithm, automatic target generation process (ATGP), and a recently developed OSP-go decomposition (OSP-GoDec) along with data sphering (DS) to make OSP applicable to anomaly detection. Its idea is to implement ATGP on the background (BKG) and target subspaces constructed from the low-rank matrix L and sparse matrix S generated by OSP-GoDec to derive an OSP-based anomaly detector (OSP-AD). In particular, OSP-AD also includes DS to remove BKG interference from the target subspace so as to enhance anomaly detection. Surprisingly, operating data samples on different constructions of the BKG subspace and the target subspace yields various versions of OSP-AD. Experiments show that given an appropriate construction of the BKG subspace and the target subspace, OSP-AD can be shown to outperform existing anomaly detectors including Reed-Xiaoli anomaly detector and collaborative representation-based anomaly detector (CRD).

Keywords