npj Climate and Atmospheric Science (May 2024)

Long range transport of South and East Asian anthropogenic aerosols counteracting Arctic warming

  • Suvarna Fadnavis,
  • Sunil M. Sonbawne,
  • Anton Laakso,
  • Felix Ploeger,
  • Alexandru Rap,
  • Bernd Heinold,
  • T. P. Sabin,
  • Rolf Müller

DOI
https://doi.org/10.1038/s41612-024-00633-1
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 11

Abstract

Read online

Abstract The large-scale convection during the Asian summer monsoon plays an important role in the rapid transport of boundary layer aerosols into the Asian summer monsoon anticyclone. Here, using the state-of-the-art ECHAM6–HAMMOZ aerosol-chemistry-climate model, we show that these aerosols are further transported to the Arctic along isentropic surfaces by the Brewer-Dobson-Circulation (BDC) during the monsoon season. Our model simulations show that East and South Asian anthropogenic emissions contribute significantly to the aerosol transported to the Arctic, which causes a higher negative net aerosol radiative forcing at the surface (dimming) of −0.09 ± 0.02 Wm−2 and −0.07 ± 0.02 Wm−2, respectively. Over the Arctic, the East Asian anthropogenic aerosols that include large amounts of sulfate cause a seasonal mean net radiative forcing at the top of the atmosphere (TOA) of −0.003 ± 0.001Wm−2 and a surface cooling of −0.56 K while the black carbon dominated aerosol from South Asia shows a positive TOA forcing of +0.004 ± 0.001Wm−2 with an only minor surface cooling of −0.043 K. Overall, the long-range transport of South Asian aerosols results in a notably warming throughout the atmospheric column but minimal temperature response at the Arctic surface. Conversely, East Asian aerosols cool the troposphere and heat the lower stratosphere in the Arctic. The Asian aerosol thus plays an ambivalent role, with the East Asian sources in particular having the potential to counteract the rapid rise in Arctic temperatures and the associated melting of snow and ice.