ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (May 2019)
NON-RIGID MULTI-BODY TRACKING IN RGBD STREAMS
Abstract
To efficiently collect training data for an off-the-shelf object detector, we consider the problem of segmenting and tracking non-rigid objects from RGBD sequences by introducing the spatio-temporal matrix with very few assumptions – no prior object model and no stationary sensor. Spatial temporal matrix is able to encode not only spatial associations between multiple objects, but also component-level spatio temporal associations that allow the correction of falsely segmented objects in the presence of various types of interaction among multiple objects. Extensive experiments over complex human/animal body motions with occlusions and body part motions demonstrate that our approach substantially improves tracking robustness and segmentation accuracy.