PLoS ONE (Jan 2023)

Effectiveness of introgression of resistance loci for Gibberella ear rot from two European flint landraces into adapted elite maize (Zea mays L.).

  • Félicien Akohoue,
  • Silvia Koch,
  • Bärbel Lieberherr,
  • Bettina Kessel,
  • Thomas Presterl,
  • Thomas Miedaner

DOI
https://doi.org/10.1371/journal.pone.0292095
Journal volume & issue
Vol. 18, no. 9
p. e0292095

Abstract

Read online

European flint landraces are a major class of maize possessing favorable alleles for improving host resistance to Gibberella ear rot (GER) disease which reduces yield and contaminates the grains with mycotoxins. However, the incorporation of these landraces into breeding programs requires a clear understanding of the effectiveness of their introgression into elite materials. We evaluated 15 pre-selected doubled haploid (DH) lines from two European flint landraces, "Kemater Landmais Gelb" (KE) and "Petkuser Ferdinand Rot" (PE), together with two adapted elite flint lines and seven standard lines for GER severity as the main trait, and several adaptation traits (plant height, days to silking, seed-set, plant vigor) across four environments. From this evaluation, three KE DH lines and one PE DH line, with the lowest GER severity, were selected and used as donor parents that were crossed with the two adapted and GER susceptible flint lines (Flint1 and Flint2) to develop six bi-parental DH populations with 34-145 DH lines each. Each DH population was evaluated across two locations. Correlations between GER severity, which was the target trait, and adaptation traits were weak (-0.02 to 0.19). GER severity of lines from PE landrace was on average 2-fold higher than lines from KE landrace, indicating a clear superiority of the KE landrace lines. Mean GER severity of the DH populations was 39.4-61.0% lower than the adapted elite flint lines. All KE-derived DH populations were on average more resistant (27.0-36.7%) than the PE-derived population (51.0%). Highly resistant lines (1.3-5.2%) were found in all of the populations, suggesting that the DH populations can be successfully integrated into elite breeding programs. The findings demonstrate that selected KE landrace lines used as donors were effective in improving GER resistance of the adapted elite inbreds.