Tongxin xuebao (Aug 2018)
Defense decision-making method based on incomplete information stochastic game and Q-learning
Abstract
Most of the existing stochastic games are based on the assumption of complete information,which are not consistent with the fact of network attack and defense.Aiming at this problem,the uncertainty of the attacker’s revenue was transformed to the uncertainty of the attacker type,and then a stochastic game model with incomplete information was constructed.The probability of network state transition is difficult to determine,which makes it impossible to determine the parameter needed to solve the equilibrium.Aiming at this problem,the Q-learning was introduced into stochastic game,which allowed defender to get the relevant parameter by learning in network attack and defense and to solve Bayesian Nash equilibrium.Based on the above,a defense decision algorithm that could learn online was designed.The simulation experiment proves the effectiveness of the proposed method.