Heliyon (Aug 2024)
A comprehensive study on electron and hole transport layers for designing and optimizing the efficiency of MoSe2-Based solar cells using numerical simulation techniques
Abstract
Researchers have recently shown a great deal of interest in molybdenum diselenide (MoSe2)-based solar cells due to their outstanding semiconducting characteristics. However, discrepancies in the band arrangement at the MoSe2/ETL (electron transport layer) and hole transport layer (HTL)/MoSe2 interfaces impede performances. In this research, a device combination with Ag/FTO/ETL/MoSe2/HTL/Ni is employed, where 7 HTLs and 3 different ETLs have been utilized to explore which device arrangement is superior. To achieve the most effective device arrangement, the effects of various device variables, such as thickness, donor density, acceptor density, defect density, temperature, series, and shunt resistance, are optimized. The computational evaluation under AM 1.5 light spectrums (100 mW/cm2) is performed using the SCAPS-1D simulator. When the several device parameters were optimized, the device that was correlated with Ag/FTO/SnS2/MoSe2/V2O5/Ni revealed the highest overall performances among the three different ETL (In2S3, SnS2, ZnSe)-based devices, with measuring a PCE of 34.07 %, a VOC of 0.918 V, a JSC of 42.565 mAcm−2, and an FF of 87.19 %. This recommended MoSe2-based solar cell exhibits outstanding efficiency in terms of maintenance and comparison to numerical thin film solar cells, highlighting MoSe2 as an attractive option for solar energy systems while eliminating toxicity challenges.