Remote Sensing (Jun 2021)

Quantitatively Estimating of InSAR Decorrelation Based on Landsat-Derived NDVI

  • Yaogang Chen,
  • Qian Sun,
  • Jun Hu

DOI
https://doi.org/10.3390/rs13132440
Journal volume & issue
Vol. 13, no. 13
p. 2440

Abstract

Read online

As a by-product of Interferometric Synthetic Aperture Radar (SAR, InSAR) technique, interferometric coherence is a measure of the decorrelation noise for InSAR observation, where the lower the coherence value, the more serious the decorrelation noise. In the densely vegetated area, the coherence value could be too low to obtain any valuable signals, leading to the degradation of InSAR performance and the possible waste of expensive SAR data. Normalized Difference Vegetation Index (NDVI) value is a measure of the vegetation coverage and can be estimated from the freely available optical satellite images. In this paper, a multi-stage model is established to quantitatively estimate the decorrelation noise for vegetable areas based on Landsat-derived NDVI prior to the acquisition of SAR data. The modeling process is being investigated with the L-band ALOS-1/PALSAR-1 data and the Landsat-5 optical data acquired in the Meitanba area of Hunan Province, China. Furthermore, the reliability of the established model is verified in the Longhui area, which is situated near the Meitanba area. The results demonstrate that the established model can quantitatively estimate InSAR decorrelation associated with the vegetation coverage.

Keywords