International Journal of Mathematics and Mathematical Sciences (Jan 2001)

Linear right ideal nearrings

  • Kenneth D. Magill

DOI
https://doi.org/10.1155/S0161171201006810
Journal volume & issue
Vol. 27, no. 11
pp. 663 – 674

Abstract

Read online

We determine, up to isomorphism, all those topological nearrings 𝒩n whose additive groups are the n-dimensional Euclidean groups, n>1, and which contain n one-dimensional linear subspaces {Ji}i=1n which are also right ideals of the nearring satisfying several additional properties. Specifically, for each w∈𝒩n, we require that there exist wi∈Ji, 1≤i≤n, such that w=w1+w2+⋯+wn and multiplication on the left of w yields the same result as multiplication by the same element on the left of wn. That is, vw=vwn for each v∈𝒩n.