IEEE Access (Jan 2020)
Machine Learning Security: Threats, Countermeasures, and Evaluations
Abstract
Machine learning has been pervasively used in a wide range of applications due to its technical breakthroughs in recent years. It has demonstrated significant success in dealing with various complex problems, and shows capabilities close to humans or even beyond humans. However, recent studies show that machine learning models are vulnerable to various attacks, which will compromise the security of the models themselves and the application systems. Moreover, such attacks are stealthy due to the unexplained nature of the deep learning models. In this survey, we systematically analyze the security issues of machine learning, focusing on existing attacks on machine learning systems, corresponding defenses or secure learning techniques, and security evaluation methods. Instead of focusing on one stage or one type of attack, this paper covers all the aspects of machine learning security from the training phase to the test phase. First, the machine learning model in the presence of adversaries is presented, and the reasons why machine learning can be attacked are analyzed. Then, the machine learning security-related issues are classified into five categories: training set poisoning; backdoors in the training set; adversarial example attacks; model theft; recovery of sensitive training data. The threat models, attack approaches, and defense techniques are analyzed systematically. To demonstrate that these threats are real concerns in the physical world, we also reviewed the attacks in real-world conditions. Several suggestions on security evaluations of machine learning systems are also provided. Last, future directions for machine learning security are also presented.
Keywords