Diagnostics (Feb 2021)

Wnt/β-Catenin Signaling Regulates CXCR4 Expression and [<sup>68</sup>Ga] Pentixafor Internalization in Neuroendocrine Tumor Cells

  • Alexander Weich,
  • Dorothee Rogoll,
  • Sophia Gawlas,
  • Lars Mayer,
  • Wolfgang Weich,
  • Judit Pongracz,
  • Theodor Kudlich,
  • Alexander Meining,
  • Michael Scheurlen

DOI
https://doi.org/10.3390/diagnostics11020367
Journal volume & issue
Vol. 11, no. 2
p. 367

Abstract

Read online

Loss of Somatostatin Receptor 2 (SSTR2) expression and rising CXC Chemokine Receptor Type 4 (CXCR4) expression are associated with dedifferentiation in neuroendocrine tumors (NET). In NET, CXCR4 expression is associated with enhanced metastatic and invasive potential and worse prognosis but might be a theragnostic target. Likewise, activation of Wnt/β-catenin signaling may promote a more aggressive phenotype in NET. We hypothesized an interaction of the Wnt/β-catenin pathway with CXCR4 expression and function in NET. The NET cell lines BON-1, QGP-1, and MS-18 were exposed to Wnt inhibitors (5-aza-CdR, quercetin, and niclosamide) or the Wnt activator LiCl. The expressions of Wnt pathway genes and of CXCR4 were studied by qRT-PCR, Western blot, and immunohistochemistry. The effects of Wnt modulators on uptake of the CXCR4 ligand [68Ga] Pentixafor were measured. The Wnt activator LiCl induced upregulation of CXCR4 and Wnt target gene expression. Treatment with the Wnt inhibitors had opposite effects. LiCl significantly increased [68Ga] Pentixafor uptake, while treatment with Wnt inhibitors decreased radiopeptide uptake. Wnt pathway modulation influences CXCR4 expression and function in NET cell lines. Wnt modulation might be a tool to enhance the efficacy of CXCR4-directed therapies in NET or to inhibit CXCR4-dependent proliferative signaling. The underlying mechanisms for the interaction of the Wnt pathway with CXCR4 expression and function have yet to be clarified.

Keywords