JPhys Photonics (Jan 2024)

Integrating multimodal Raman and photoluminescence microscopy with enhanced insights through multivariate analysis

  • Alessia Di Benedetto,
  • Paolo Pozzi,
  • Gianluca Valentini,
  • Daniela Comelli

DOI
https://doi.org/10.1088/2515-7647/ad5773
Journal volume & issue
Vol. 6, no. 3
p. 035019

Abstract

Read online

This paper introduces a novel multimodal optical microscope, integrating Raman and laser-induced photoluminescence (PL) spectroscopy for the analysis of micro-samples relevant in Heritage Science. Micro-samples extracted from artworks, such as paintings, exhibit intricate material compositions characterized by high complexity and spatial heterogeneity, featuring multiple layers of paint that may be also affected by degradation phenomena. Employing a multimodal strategy becomes imperative for a comprehensive understanding of their material composition and condition. The effectiveness of the proposed setup derives from synergistically harnessing the distinct strengths of Raman and laser-induced PL spectroscopy. The capacity to identify various chemical species through the latter technique is enhanced by using multiple excitation wavelengths and two distinct excitation fluence regimes. The combination of the two complementary techniques allows the setup to effectively achieve comprehensive chemical mapping of sample through a raster scanning approach. To attain a competitive overall measurement time, we employ a short integration time for each measurement point. We further propose an analysis protocol rooted in a multivariate approach. Specifically, we employ non-negative matrix factorization as the spectral decomposition method. This enables the identification of spectral endmembers, effectively correlated with specific chemical compounds present in samples. To demonstrate its efficacy in Heritage Science, we present examples involving pigment powder dispersions and stratigraphic micro-samples from paintings. Through these examples, we show how the multimodal approach reinforces material identification and, more importantly, facilitates the extraction of complementary information. This is pivotal as the two optical techniques exhibit sensitivity to different materials. Looking ahead, our method holds potential applications in diverse research fields, including material science and biology.

Keywords