Applied Sciences (Jun 2021)

Strength Enhancement in Fused Filament Fabrication via the Isotropy Toolpath

  • Xinyi Xiao,
  • Byeong-Min Roh,
  • Feng Zhu

DOI
https://doi.org/10.3390/app11136100
Journal volume & issue
Vol. 11, no. 13
p. 6100

Abstract

Read online

The fused filament fabrication (FFF) process deposits thermoplastic material in a layer-by-layer manner, expanding the design space and manufacturing capability compared with traditional manufacturing. However, the FFF process is inherently directional as the material is deposited in a layer-wise manner. Therefore, the in-plane material cannot reach the isotropy character when performing the tensile test. This would cause the strength of the print components to vary based on the different process planning selections (building orientation, toolpath pattern). The existing toolpaths, primarily used in the FFF process, are linear, zigzag, and contour toolpaths, which always accumulate long filaments and are unidirectional. Thus, this would create difficulties in improving the mechanical strength from the existing toolpath strategies due to the material in-plane anisotropy. In this paper, an in-plane isotropy toolpath pattern is generated to enhance the mechanical strength in the FFF process. The in-plane isotropy can be achieved through continuous deposition while maintaining randomized distribution within a layer. By analyzing the tensile strength on the specimens made by traditional in-plane anisotropy toolpath and the proposed in-plane isotropy toolpath, our results suggest that the mechanical strength can be reinforced by at least 20% using our proposed toolpath strategy in extrusion-based additive manufacturing.

Keywords