Foods (Jan 2024)

Quality and Process Optimization of Infrared Combined Hot Air Drying of Yam Slices Based on BP Neural Network and Gray Wolf Algorithm

  • Jikai Zhang,
  • Xia Zheng,
  • Hongwei Xiao,
  • Chunhui Shan,
  • Yican Li,
  • Taoqing Yang

DOI
https://doi.org/10.3390/foods13030434
Journal volume & issue
Vol. 13, no. 3
p. 434

Abstract

Read online

In this paper, the effects on drying time (Y1), the color difference (Y2), unit energy consumption (Y3), polysaccharide content (Y4), rehydration ratio (Y5), and allantoin content (Y6) of yam slices were investigated under different drying temperatures (50–70 °C), slice thicknesses (2–10 mm), and radiation distances (80–160 mm). The optimal drying conditions were determined by applying the BP neural network wolf algorithm (GWO) model based on response surface methodology (RMS). All the above indices were significantly affected by drying conditions (p R2 = 0.9919 to 0.9983) and lower RMSEs (reduced by 61.34% to 80.03%) than RMS. Multi-objective optimization of BP-GWO was carried out to obtain the optimal drying conditions, as follows: temperature 63.57 °C, slice thickness 4.27 mm, radiation distance 91.39 mm, corresponding to the optimal indices, as follows: Y1 = 133.71 min, Y2 = 7.26, Y3 = 8.54 kJ·h·kg−1, Y4 = 20.73 mg/g, Y5 = 2.84 kg/kg, and Y6 = 3.69 μg/g. In the experimental verification of the prediction results, the relative error between the actual and predicted values was less than 5%, proving the model’s reliability for other materials in the drying technology process research to provide a reference.

Keywords