Karpatsʹkì Matematičnì Publìkacìï (Dec 2021)

On convergence of branched continued fraction expansions of Horn's hypergeometric function $H_3$ ratios

  • T.M. Antonova

DOI
https://doi.org/10.15330/cmp.13.3.642-650
Journal volume & issue
Vol. 13, no. 3
pp. 642 – 650

Abstract

Read online

The paper deals with the problem of convergence of the branched continued fractions with two branches of branching which are used to approximate the ratios of Horn's hypergeometric function $H_3(a,b;c;{\bf z})$. The case of real parameters $c\geq a\geq 0,$ $c\geq b\geq 0,$ $c\neq 0,$ and complex variable ${\bf z}=(z_1,z_2)$ is considered. First, it is proved the convergence of the branched continued fraction for ${\bf z}\in G_{\bf h}$, where $G_{\bf h}$ is two-dimensional disk. Using this result, sufficient conditions for the uniform convergence of the above mentioned branched continued fraction on every compact subset of the domain $\displaystyle H=\bigcup_{\varphi\in(-\pi/2,\pi/2)}G_\varphi,$ where \[\begin{split} G_{\varphi}=\big\{{\bf z}\in\mathbb{C}^{2}:&\;{\rm Re}(z_1e^{-i\varphi})<\lambda_1 \cos\varphi,\; |{\rm Re}(z_2e^{-i\varphi})|<\lambda_2 \cos\varphi, \\ &\;|z_k|+{\rm Re}(z_ke^{-2i\varphi})<\nu_k\cos^2\varphi,\;k=1,2;\; \\ &\; |z_1z_2|-{\rm Re}(z_1z_2e^{-2\varphi})<\nu_3\cos^{2}\varphi\big\}, \end{split}\] are established.

Keywords