Advances in Physics: X (Jan 2021)

Enrolling reactive oxygen species in photon-to-chemical energy conversion: fundamentals, technological advances, and applications

  • Irving D. Rettig,
  • Theresa M. McCormick

DOI
https://doi.org/10.1080/23746149.2021.1950049
Journal volume & issue
Vol. 6, no. 1

Abstract

Read online

In theory, oxygen (O2) is an ideal chemical reagent because of its high relative abundance and negligible environmental toxicity. In practice however, by the nature of its ground state electronic configuration, many chemical reactions involving O2 are spin forbidden which dramatically decreases its reactivity and thus its utility in applications. More reactive forms of O2 can be achieved by changing its electronic configuration through the use of photochemical and photophysical methods. This review highlights the roll of photon-to-chemical energy conversion in two of these reactive oxygen species (ROS): superoxide (O2−) and singlet oxygen (1O2), which can be accessed through a number of photochemical methods and used in a variety of exciting applications. The theory behind ROS is introduced as produced using light irradiation. Then applications of these methods for chemical transformations are explored.

Keywords