The Astrophysical Journal (Jan 2023)

SN 2022joj: A Peculiar Type Ia Supernova Possibly Driven by an Asymmetric Helium-shell Double Detonation

  • Chang Liu,
  • Adam A. Miller,
  • Samuel J. Boos,
  • Ken J. Shen,
  • Dean M. Townsley,
  • Steve Schulze,
  • Luke Harvey,
  • Kate Maguire,
  • Joel Johansson,
  • Thomas G. Brink,
  • Umut Burgaz,
  • Georgios Dimitriadis,
  • Alexei V. Filippenko,
  • Saarah Hall,
  • K-Ryan Hinds,
  • Andrew Hoffman,
  • Viraj Karambelkar,
  • Charles D. Kilpatrick,
  • Daniel Perley,
  • Neil Pichay,
  • Huei Sears,
  • Jesper Sollerman,
  • Robert Stein,
  • Jacco H. Terwel,
  • WeiKang Zheng,
  • Matthew J. Graham,
  • Mansi M. Kasliwal,
  • Leander Lacroix,
  • Josiah Purdum,
  • Benjamin Rusholme,
  • Avery Wold

DOI
https://doi.org/10.3847/1538-4357/acffc9
Journal volume & issue
Vol. 958, no. 2
p. 178

Abstract

Read online

We present observations of SN 2022joj, a peculiar Type Ia supernova discovered by the Zwicky Transient Facility. SN 2022joj exhibits an unusually red g _ZTF − r _ZTF color at early times and a rapid blueward evolution afterward. Around maximum brightness, SN 2022joj shows a high luminosity ( ${M}_{{g}_{\mathrm{ZTF}},\max }\simeq -19.7$ mag), a blue broadband color ( g _ZTF − r _ZTF ≃ −0.2 mag), and shallow Si ii absorption lines, consistent with those of overluminous, SN 1991T-like events. The maximum-light spectrum also shows prominent absorption around 4200 Å, which resembles the Ti ii features in subluminous, SN 1991bg-like events. Despite the blue optical-band colors, SN 2022joj exhibits extremely red ultraviolet minus optical colors at maximum luminosity ( u − v ≃ 0.6 mag and uvw 1 − v ≃ 2.5 mag), suggesting a suppression of flux at ∼2500–4000 Å. Strong C ii lines are also detected at peak. We show that these unusual spectroscopic properties are broadly consistent with the helium-shell double detonation of a sub-Chandrasekhar mass ( M ≃ 1 M _⊙ ) carbon/oxygen white dwarf from a relatively massive helium shell ( M _s ≃ 0.04–0.1 M _⊙ ), if observed along a line of sight roughly opposite to where the shell initially detonates. None of the existing models could quantitatively explain all the peculiarities observed in SN 2022joj. The low flux ratio of [Ni ii ] λ 7378 to [Fe ii ] λ 7155 emission in the late-time nebular spectra indicates a low yield of stable Ni isotopes, favoring a sub-Chandrasekhar mass progenitor. The significant blueshift measured in the [Fe ii ] λ 7155 line is also consistent with an asymmetric chemical distribution in the ejecta, as is predicted in double-detonation models.

Keywords