Aerospace (Jun 2024)
Optimal Guidance for Heliocentric Orbit Cranking with E-Sail-Propelled Spacecraft
Abstract
In astrodynamics, orbit cranking is usually referred to as an interplanetary transfer strategy that exploits multiple gravity-assist maneuvers to change both the inclination and eccentricity of the spacecraft osculating orbit without changing the specific mechanical energy, that is, the semimajor axis. In the context of a solar sail-based mission, however, the concept of orbit cranking is typically referred to as a suitable guidance law that is able to (optimally) change the orbital inclination of a circular orbit of an assigned radius in a general heliocentric three-dimensional scenario. In fact, varying the orbital inclination is a challenging maneuver from the point of view of the velocity change, so orbit cranking is an interesting mission application for a propellantless propulsion system. The aim of this paper is to analyze the performance of a spacecraft equipped with an Electric Solar Wind Sail in a cranking maneuver of a heliocentric circular orbit. The maneuver performance is calculated in an optimal framework considering spacecraft dynamics described by modified equinoctial orbital elements. In this context, the paper presents an analytical version of the three-dimensional optimal guidance laws obtained by using the classical Pontryagin’s maximum principle. The set of (analytical) optimal control laws is a new contribution to the Electric Solar Wind Sail-related literature.
Keywords