Biomedicines (Oct 2022)

Plasmacytoma Variant Translocation 1 (PVT1) Gene as a Potential Novel Target for the Treatment of Diabetic Nephropathy

  • Helen Mok,
  • Ahmed Al-Jumaily,
  • Jun Lu

DOI
https://doi.org/10.3390/biomedicines10112711
Journal volume & issue
Vol. 10, no. 11
p. 2711

Abstract

Read online

Introduction: Diabetic nephropathy (DN), a severe microvascular complication in patients with diabetes, is clinically characterized by progressive decline in glomerular filtration rate (GFR). DN is the most common cause of end-stage renal disease (ESRD), and has a consistently high mortality rate. Despite the fact that the prevalence of DN is increasing worldwide, the molecular mechanism underlying the pathogenesis of DN is not fully understood. Previous studies indicated PVT1 as a key determinant of ESRD as well as a mediator of extracellular matrix (ECM) accumulation in vitro. More investigations into the role of PVT1 in DN development are needed. Objectives: To study the effect of PVT1 silencing on progression of DN in diabetic male C57BL/6 mice at early, intermediate and relatively advanced ages. Methods: Diabetic mice were treated with either scramble-siRNA (DM + siRNA (scramble)) or PVT1-siRNA (DM + siRNA (PVT1)), whereas the control mice were normal mice without siRNA injection (Control). Blood, urine and kidney were collected at the age of 9 (young), 16 (middle-aged) or 24 (old) weeks old. Kidney function, histology and molecular gene expression were evaluated. Results: Our findings showed that silencing of PVT1 reduced kidney hypertrophy, proteinuria (UAE, UACR, UPE, UPCR), serum creatinine, serum TGF-β1, serum insulin decline, glomerular and mesangial areas, and increased creatinine clearance in diabetic mice to levels closer to the age-matched controls. Also, silencing of PVT1 markedly suppressed the upregulation of PAI-1, TGF-β1, FN1, COL4A1, and downregulation of BMP7. Conclusion: Silencing of PVT1 ameliorates DN in terms of kidney function and histology in diabetic mice. The renoprotection is attributed to the reduction in ECM accumulation, TGF-β1 elevation and insulin decline. PVT1 is suggested to play an important role in ECM accumulation which makes it a possible target for the treatment of DN.

Keywords