International Journal of Molecular Sciences (Mar 2020)

Vitamin D Attenuates Loss of Endothelial Biomarker Expression in Cardio-Endothelial Cells

  • Chi-Cheng Lai,
  • Wang-Chuan Juang,
  • Gwo-Ching Sun,
  • Yu-Kai Tseng,
  • Rong-Chang Jhong,
  • Ching-Jiunn Tseng,
  • Tzyy-Yue Wong,
  • Pei-Wen Cheng

DOI
https://doi.org/10.3390/ijms21062196
Journal volume & issue
Vol. 21, no. 6
p. 2196

Abstract

Read online

Vitamin D is associated with cardiovascular health through activating the vitamin D receptor that targets genes related to cardiovascular disease (CVD). The human cardiac microvascular endothelial cells (HCMECs) were used to develop mechanically and TGF-β1-induced fibrosis models, and the rat was used as the isoproterenol (ISO)-induced fibrosis model. The rats were injected with ISO for the first five days, followed by vitamin D injection for the consecutive three weeks before being sacrificed on the fourth week. Results showed that mechanical stretching reduced endothelial cell marker CD31 and VE-cadherin protein expressions, as well as increased α-smooth muscle actin (α-SMA) and fibronectin (FN). The transforming growth factor-β1 (TGF-β1) reduced CD31, and increased α-SMA and FN protein expression levels. Vitamin D presence led to higher protein expression of CD31, and lower protein expressions of α-SMA and FN compared to the control in the TGF-β1-induced fibrosis model. Additionally, protein expression of VE-cadherin was increased and fibroblast-specific protein-1 (FSP1) was decreased after vitamin D treatment in the ISO-induced fibrosis rat. In conclusion, vitamin D slightly inhibited fibrosis development in cell and animal models. Based on this study, the beneficial effect of vitamin D may be insignificant; however, further investigation of vitamin D’s effect in the long-term is required in the future.

Keywords