Journal for ImmunoTherapy of Cancer (Apr 2024)

Germline homozygosity and allelic imbalance of HLA-I are common in esophagogastric adenocarcinoma and impair the repertoire of immunogenic peptides

  • Alexander Quaas,
  • Julie George,
  • Philipp Müller,
  • Hans Anton Schlößer,
  • Michael von Bergwelt-Baildon,
  • Martin Thelen,
  • Birgit Gathof,
  • Martin Peifer,
  • Thomas Zander,
  • Axel M Hillmer,
  • Christiane Bruns,
  • Diandra Keller,
  • Jonas Lehmann,
  • Kerstin Wennhold,
  • Eugen Bauer,
  • Maria Alejandra Garcia-Marquez,
  • Roman Thomas,
  • Lukas Maas,
  • Miloš Nikolić,
  • Wolfgang Schröder,
  • Ali M Yazbeck

DOI
https://doi.org/10.1136/jitc-2023-007268
Journal volume & issue
Vol. 12, no. 4

Abstract

Read online

Background The individual HLA-I genotype is associated with cancer, autoimmune diseases and infections. This study elucidates the role of germline homozygosity or allelic imbalance of HLA-I loci in esophago-gastric adenocarcinoma (EGA) and determines the resulting repertoires of potentially immunogenic peptides.Methods HLA genotypes and sequences of either (1) 10 relevant tumor-associated antigens (TAAs) or (2) patient-specific mutation-associated neoantigens (MANAs) were used to predict good-affinity binders using an in silico approach for MHC-binding (www.iedb.org). Imbalanced or lost expression of HLA-I-A/B/C alleles was analyzed by transcriptome sequencing. FluoroSpot assays and TCR sequencing were used to determine peptide-specific T-cell responses.Results We show that germline homozygosity of HLA-I genes is significantly enriched in EGA patients (n=80) compared with an HLA-matched reference cohort (n=7605). Whereas the overall mutational burden is similar, the repertoire of potentially immunogenic peptides derived from TAAs and MANAs was lower in homozygous patients. Promiscuity of peptides binding to different HLA-I molecules was low for most TAAs and MANAs and in silico modeling of the homozygous to a heterozygous HLA genotype revealed normalized peptide repertoires. Transcriptome sequencing showed imbalanced expression of HLA-I alleles in 75% of heterozygous patients. Out of these, 33% showed complete loss of heterozygosity, whereas 66% had altered expression of only one or two HLA-I molecules. In a FluoroSpot assay, we determined that peptide-specific T-cell responses against NY-ESO-1 are derived from multiple peptides, which often exclusively bind only one HLA-I allele.Conclusion The high frequency of germline homozygosity in EGA patients suggests reduced cancer immunosurveillance leading to an increased cancer risk. Therapeutic targeting of allelic imbalance of HLA-I molecules should be considered in EGA.