Ecology and Evolution (Jul 2021)
What, how, and how much do herbivores eat? The Continuous Bite Monitoring method for assessing forage intake of grazing animals
Abstract
Abstract Determining herbage intake is pivotal for studies on grazing ecology. Direct observation of animals allows describing the interactions of animals with the pastoral environment along the complex grazing process. The objectives of the study were to evaluate the reliability of the continuous bite monitoring (CBM) method in determining herbage intake in grazing sheep compared to the standard double‐weighing technique method during 45‐min feeding bouts; evaluate the degree of agreement between the two techniques; and to test the effect of different potential sources of variation on the reliability of the CBM. The CBM method has been used to describe the intake behavior of grazing herbivores. In this study, we evaluated a new approach to this method, that is, whether it is a good proxy for determining the intake of grazing animals. Three experiments with grazing sheep were carried out in which we tested for different sources of variations, such as the number of observers, level of detail of bite coding grid, forage species, forage allowance, sward surface height heterogeneity, experiment site, and animal weight, to determine the short‐term intake rate (45 min). Observer (Pexp1 = 0.018, Pexp2 = 0.078, and Pexp3 = 0.006), sward surface height (Pexp2 < 0.001), total number of bites observed per grazing session (Pexp2 < 0.001 and Pexp3 < 0.001), and sward depletion (Pexp3 < 0.001) were found to affect the absolute error of intake estimation. The results showed a high correlation and agreement between the two methods in the three experiments, although intake was overestimation by CBM on experiments 2 and 3 (181.38 and 214.24 units, respectively). This outcome indicates the potential of CBM to determining forage intake with the benefit of a greater level of detail on foraging patterns and components of the diet. Furthermore, direct observation is not invasive nor disrupts natural animal behavior.
Keywords