Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom; Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
Department of Ecology & Evolutionary Biology, Princeton University, Princeton, United States; Fogarty International Center, National Institutes of Health, Bethesda, United States
Seasonal influenza viruses create a persistent global disease burden by evolving to escape immunity induced by prior infections and vaccinations. New antigenic variants have a substantial selective advantage at the population level, but these variants are rarely selected within-host, even in previously immune individuals. Using a mathematical model, we show that the temporal asynchrony between within-host virus exponential growth and antibody-mediated selection could limit within-host antigenic evolution. If selection for new antigenic variants acts principally at the point of initial virus inoculation, where small virus populations encounter well-matched mucosal antibodies in previously-infected individuals, there can exist protection against reinfection that does not regularly produce observable new antigenic variants within individual infected hosts. Our results provide a theoretical explanation for how virus antigenic evolution can be highly selective at the global level but nearly neutral within-host. They also suggest new avenues for improving influenza control.