Acta Crystallographica Section E (Jul 2013)

Redetermination of katayamalite, KLi3Ca7Ti2(SiO3)12(OH)2

  • Marcelo B. Andrade,
  • Donald Doell,
  • Robert T. Downs,
  • Hexiong Yang

DOI
https://doi.org/10.1107/S1600536813016620
Journal volume & issue
Vol. 69, no. 7
pp. i41 – i41

Abstract

Read online

The crystal structure of katayamalite, ideally KLi3Ca7Ti2(SiO3)12(OH)2 (potassium trilithium heptacalcium dititanium dodecasilicate dihydroxide), was previously reported in triclinic symmetry (C-1), with isotropic displacement parameters for all atoms and without the H-atom position [Kato & Murakami (1985). Mineral. J. 12, 206–217]. The present study redetermines the katayamalite structure with monoclinic symmetry (space group C2/c) based on single-crystal X-ray diffraction data from a sample from the type locality, Iwagi Island, Ehime Prefecture, Japan, with anisotropic displacement parameters for all non-H atoms, and with the H atoms located by difference Fourier analysis. The structure of katayamalite contains a set of six-membered silicate rings interconnected by sheets of Ca atoms on one side and by an ordered mixture of Li, Ti and K atoms on the other side, forming layers which are stacked normal to (001). From the eight different metal sites, three are located on special positions, viz. one K and one Li atom on twofold rotation axes and one Ca atom on an inversion center. The Raman spectrum of kataymalite shows a band at 3678 cm−1, similar to that observed for hydroxyl-amphiboles, indicating no or very weak hydrogen bonding.