NeuroImage (Dec 2023)
Alpha oscillations encode Bayesian belief updating underlying attentional allocation in dynamic environments
Abstract
In a dynamic environment, expectations of the future constantly change based on updated evidence and affect the dynamic allocation of attention. To further investigate the neural mechanisms underlying attentional expectancies, we employed a modified Central Cue Posner Paradigm in which the probability of cues being valid (that is, accurately indicated the upcoming target location) was manipulated. Attentional deployment to the cued location (α), which was governed by precision of predictions on previous trials, was estimated using a hierarchical Bayesian model and was included as a regressor in the analyses of electrophysiological (EEG) data. Our results revealed that before the target appeared, alpha oscillations (8∼13 Hz) for high-predictability cues (88 % valid) were significantly predicted by precision-dependent attention (α). This relationship was not observed under low-predictability conditions (69 % and 50 % valid cues). After the target appeared, precision-dependent attention (α) correlated with alpha band oscillations only in the valid cue condition and not in the invalid condition. Further analysis under conditions of significant attentional modulation by precision suggested a separate effect of cue orientation. These results provide new insights on how trial-by-trial Bayesian belief updating relates to alpha band encoding of environmentally-sensitive allocation of visual spatial attention.