Trends in Computational and Applied Mathematics (Sep 2022)

Novas versões para a Inversa Aproximada em Blocos: Uma Comparação Numérica

  • J. S. Cruz,
  • M. C. Almeida,
  • L. M. Carvalho,
  • M. Souza

DOI
https://doi.org/10.5540/tcam.2022.023.03.00471
Journal volume & issue
Vol. 23, no. 3

Abstract

Read online

Propomos duas variações do precondicionador de aproximação da inversa em blocos (BAINV), originalmente desenvolvido por Benzi, Kouhia e Tuma em 2001. A primeira variação, a aproximação da inversa em blocos estabilizada para matrizes não simétricas (SBAINV-NS), é válida para matrizes não simétricas e não singulares. A segunda variação, a aproximação da inversa em blocos estabilizada combinada (SBAINV-VAR), é baseada nas relações dos fatores da inversa aproximada em blocos com a fatoração LDU em blocos de A, as quais demonstraremos, e na relação de aproximação da inversa de Neumann. Demonstramos a consistência matemática dessas novas versões e apresentamos os algoritmos referentes a cada uma delas, além de exibir experimentos numéricos onde comparamos a densidade dos precondicionadores e o número de iterações quando aplicados ao método estabilizado de gradientes bi-conjugados (Bi-CGSTAB). Os principais resultados numéricos obtidos indicam que o uso da estrutura de blocos pode aumentar a performance do método iterativo de Krylov em comparação com a versão escalar. Além disso, nos experimentos apresentados, o SBAINV-VAR produz, em geral, precondicionadores que realizam menos iterações do Bi-CGSTAB e são menos densos do que o SBAINV-NS.

Keywords