Scientific Reports (Oct 2024)

Adhesive and mechanical properties of the glue produced by 25 Drosophila species

  • Manon Monier,
  • Jean-Noël Lorenzi,
  • Sunitha Narasimha,
  • Flora Borne,
  • Vincent Contremoulins,
  • Louis Mevel,
  • Romane Petit,
  • Youssef El Hachem,
  • François Graner,
  • Virginie Courtier-Orgogozo

DOI
https://doi.org/10.1038/s41598-024-74358-9
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Drosophila glue, a bioadhesive produced by fly larvae to attach themselves to a substrate for several days, has recently gained attention for its peculiar adhesive and mechanical properties. Although Drosophila glue production was described more than 50 years ago, a general survey of the adhesive and mechanical properties of this proteinaceous gel across Drosophila species is lacking. To measure adhesion, we present here a protocol that is robust to variations in protocol parameters, pupal age and calculation methods. We find that the glue, which covers the entire pupal surface, increases the animal rigidity and plasticity when bound to a glass slide. Our survey of pupal adhesion in 25 Drosophilidae species reveals a wide range of phenotypes, from species that produce no or little glue and adhere little, to species that produce high amounts of glue and adhere strongly. One species, D. hydei, stands out from the rest and emerges as a promising model for the development of future bioadhesives, as it has the highest detachment force per glue area and produces relatively large amounts of glue relative to its size. We also observe that species that invest more in glue tend to live in more windy and less rainy climates, suggesting that differences in pupal adhesion properties across species are shaped by ecological factors. Our present survey provides a basis for future biomimetic studies based on Drosophila glue.

Keywords