Quantum (Nov 2020)

Experimental Comparison of Bohm-like Theories with Different Primary Ontologies

  • Arthur O. T. Pang,
  • Hugo Ferretti,
  • Noah Lupu-Gladstein,
  • Weng-Kian Tham,
  • Aharon Brodutch,
  • Kent Bonsma-Fisher,
  • J. E. Sipe,
  • Aephraim M. Steinberg

DOI
https://doi.org/10.22331/q-2020-11-26-365
Journal volume & issue
Vol. 4
p. 365

Abstract

Read online

The de Broglie-Bohm theory is a hidden-variable interpretation of quantum mechanics which involves particles moving through space along deterministic trajectories. This theory singles out position as the primary ontological variable. Mathematically, it is possible to construct a similar theory where particles are moving through momentum-space, and momentum is singled out as the primary ontological variable. In this paper, we construct the putative particle trajectories for a two-slit experiment in both the position and momentum-space theories by simulating particle dynamics with coherent light. Using a method for constructing trajectories in the primary and non-primary spaces, we compare the phase-space dynamics offered by the two theories and show that they do not agree. This contradictory behaviour underscores the difficulty of selecting one picture of reality from the infinite number of possibilities offered by Bohm-like theories.