PLoS ONE (Jan 2016)

Holothurian Nervous System Diversity Revealed by Neuroanatomical Analysis.

  • Carlos A Díaz-Balzac,
  • María I Lázaro-Peña,
  • Lionel D Vázquez-Figueroa,
  • Roberto J Díaz-Balzac,
  • José E García-Arrarás

DOI
https://doi.org/10.1371/journal.pone.0151129
Journal volume & issue
Vol. 11, no. 3
p. e0151129

Abstract

Read online

The Echinodermata comprise an interesting branch in the phylogenetic tree of deuterostomes. Their radial symmetry which is reflected in their nervous system anatomy makes them a target of interest in the study of nervous system evolution. Until recently, the study of the echinoderm nervous system has been hindered by a shortage of neuronal markers. However, in recent years several markers of neuronal and fiber subpopulations have been described. These have been used to identify subpopulations of neurons and fibers, but an integrative study of the anatomical relationship of these subpopulations is wanting. We have now used eight commercial antibodies, together with three antibodies produced by our group to provide a comprehensive and integrated description and new details of the echinoderm neuroanatomy using the holothurian Holothuria glaberrima (Selenka, 1867) as our model system. Immunoreactivity of the markers used showed: (1) specific labeling patterns by markers in the radial nerve cords, which suggest the presence of specific nerve tracts in holothurians. (2) Nerves directly innervate most muscle fibers in the longitudinal muscles. (3) Similar to other deuterostomes (mainly vertebrates), their enteric nervous system is composed of a large and diverse repertoire of neurons and fiber phenotypes. Our results provide a first blueprint of the anatomical organization of cells and fibers that form the holothurian neural circuitry, and highlight the fact that the echinoderm nervous system shows unexpected diversity in cell and fiber types and their distribution in both central and peripheral nervous components.