Molecules (Dec 2022)

Short-Chain Fatty Acids Weaken Ox-LDL-Induced Cell Inflammatory Injury by Inhibiting the NLRP3/Caspase-1 Pathway and Affecting Cellular Metabolism in THP-1 Cells

  • Chengxue Yi,
  • Wen Sun,
  • Longkun Ding,
  • Man Yan,
  • Chang Sun,
  • Chenguang Qiu,
  • Dongxu Wang,
  • Liang Wu

DOI
https://doi.org/10.3390/molecules27248801
Journal volume & issue
Vol. 27, no. 24
p. 8801

Abstract

Read online

Short-chain fatty acids (SCFAs) are important anti-inflammatory metabolites of intestinal flora. Oxidized low-density lipoprotein (ox-LDL)-induced macrophage activation is critical for the formation of atherosclerosis plaque. However, the association between SCFAs and ox-LDL-induced macrophage activation with respect to the formation of atherosclerosis plaque has not yet been elucidated. The present study investigated whether SCFAs (sodium acetate, sodium propionate, and sodium butyrate) can affect ox-LDL-induced macrophage activation and potential signaling pathways via regulation of the expression of the NLRP3/Caspase-1 pathway. Using human monocyte-macrophage (THP-1) cells as a model system, it was observed that ox-LDL not only induced cell inflammatory injury but also activated the NLRP3/Caspase-1 pathway. The exogenous supplementation of three SCFAs could significantly inhibit cell inflammatory injury induced by ox-LDL. Moreover, three SCFAs decreased the expression of IL-1β and TNF-α via the inactivation of the NLRP3/Caspase-1 pathway induced by ox-LDL. Furthermore, three SCFAs affected cellular metabolism in ox-LDL-induced macrophages, as detected by untargeted metabolomics analysis. The results of the present study indicated that three SCFAs inhibited ox-LDL-induced cell inflammatory injury by blocking the NLRP3/Caspase-1 pathway, thereby improving cellular metabolism. These findings may provide novel insights into the role of SCFA intervention in the progression of atherosclerotic plaque formation.

Keywords