World Electric Vehicle Journal (Oct 2024)
Cascaded Vehicle State Estimation Method of 4WIDEVs Considering System Delay and Noise
Abstract
Considering the negative effects of time delay and noise on vehicle state estimation, a cascaded estimation means for the vehicle sideslip angle is proposed utilizing the ODUKF algorithm. To achieve strong-correlation decoupling between state variables and model interference of the EDWM, an augmented EDWM was constructed by introducing the tire relaxation length dynamic equation, which enables the precise model relationship between the longitudinal and transverse tire force relaxation length to be constructed while also achieving the decoupling of the system state from the unknown input. To achieve a vehicle driving state estimation, a hierarchical estimation architecture was adopted to design a cascading estimation method for the vehicle driving state. By using tire force estimation values as input for the vehicle driving state estimation, the required vehicle body postures can be estimated. At the same time, facing the problems of system delay and noise, an estimator derived from the ODUKF is designed by combining the model and cascade estimation strategy. The simulation comparative analysis and quantitative statistical results under multiple operating conditions provide evidence that the developed means effectively heighten the estimation accurateness and real-time performance while considering system time delay and noise.
Keywords