Toxics (May 2024)

Migration Patterns and Potential Risk Assessment of Trace Elements in the Soil–Plant System in the Production Area of the Chinese Medicinal Herb <i>Scrophularia ningpoensis</i> Hemsl.

  • Yufeng Gong,
  • Wei Ren,
  • Zhenming Zhang

DOI
https://doi.org/10.3390/toxics12050355
Journal volume & issue
Vol. 12, no. 5
p. 355

Abstract

Read online

Scrophularia ningpoensis Hemsl. holds a prominent place among Chinese medicinal herbs. Assessing the soil–plant system of its origin is crucial for ensuring medication safety. Although some trace elements are essential for the normal functioning of living organisms, exposure to higher concentrations is harmful to humans, so in order to assess the possible health risk of trace elements in the soil–plant system of Scrophularia ningpoensis Hemsl. origin for human assessment, we used non-carcinogenic risk (HI) and carcinogenic risk (CR) for their evaluation. In this paper, the following trace elements were studied in the soil–Scrophularia ningpoensis Hemsl. system: manganese (Mn), iron (Fe), cobalt (Co), zinc (Zn), selenium (Se), molybdenum (Mo), arsenic (As) and lead (Pb). Correlation and structural equation analyses showed that the effect of soil in the root zone on the plant was much greater than the effect of soil in the non-root zone on the plant. The single-factor pollution index (Pi) showed that the soil in the production area of Scrophularia ningpoensis Hemsl. was polluted to a certain extent, notably with Pb showing the highest average Pi values of 0.94 and 0.89 in the non-root and root zones, respectively. Additionally, the Nemerow composite pollution indices (PN) for both zones indicated an alert range. Regarding health risks, exposure to soil in the non-root zone posed higher non-carcinogenic risk (HI) and carcinogenic risk (CR) compared to the root zone, although neither zone presented a significant carcinogenic risk. The potential non-carcinogenic risk (HI) and carcinogenic risk (CR) from consuming Scrophularia ningpoensis Hemsl. leaves and stems were more than ten times higher than that of roots. However, the carcinogenic risk (CR) values for both the soil and plant of interest in the soil– Scrophularia ningpoensis Hemsl. system did not exceed 10−4, and therefore no significant carcinogenic risk existed.

Keywords