Geoscientific Model Development (May 2024)

Parallel SnowModel (v1.0): a parallel implementation of a distributed snow-evolution modeling system (SnowModel)

  • R. Mower,
  • R. Mower,
  • E. D. Gutmann,
  • G. E. Liston,
  • J. Lundquist,
  • S. Rasmussen

DOI
https://doi.org/10.5194/gmd-17-4135-2024
Journal volume & issue
Vol. 17
pp. 4135 – 4154

Abstract

Read online

SnowModel, a spatially distributed snow-evolution modeling system, was parallelized using Coarray Fortran for high-performance computing architectures to allow high-resolution (1 m to hundreds of meters) simulations over large regional- to continental-scale domains. In the parallel algorithm, the model domain was split into smaller rectangular sub-domains that are distributed over multiple processor cores using one-dimensional decomposition. All the memory allocations from the original code were reduced to the size of the local sub-domains, allowing each core to perform fewer computations and requiring less memory for each process. Most of the subroutines in SnowModel were simple to parallelize; however, there were certain physical processes, including blowing snow redistribution and components within the solar radiation and wind models, that required non-trivial parallelization using halo-exchange patterns. To validate the parallel algorithm and assess parallel scaling characteristics, high-resolution (100 m grid) simulations were performed over several western United States domains and over the contiguous United States (CONUS) for a year. The CONUS scaling experiment had approximately 70 % parallel efficiency; runtime decreased by a factor of 1.9 running on 1800 cores relative to 648 cores (the minimum number of cores that could be used to run such a large domain because of memory and time limitations). CONUS 100 m simulations were performed for 21 years (2000–2021) using 46 238 and 28 260 grid cells in the x and y dimensions, respectively. Each year was simulated using 1800 cores and took approximately 5 h to run.