PeerJ Computer Science (Sep 2021)

An improved measure for belief structure in the evidence theory

  • Qiang Zhang,
  • Hao Li,
  • Rongfei Li,
  • Yongchuan Tang

DOI
https://doi.org/10.7717/peerj-cs.710
Journal volume & issue
Vol. 7
p. e710

Abstract

Read online Read online

Dempster–Shafer evidence theory (D–S theory) is suitable for processing uncertain information under complex circumstances. However, how to measure the uncertainty of basic probability distribution (BPA) in D–S theory is still an open question. In this paper, a method of measuring total uncertainty based on belief interval distance is proposed. This method is directly defined in the D–S theoretical framework, without the need of converting BPA into probability distribution by Pignistic probability transformation. Thus, it avoids the loss of information. This paper analyzes the advantages and disadvantages of the previous total uncertainty of measurement, and the uncertainty measurement examples show the effectiveness of the new uncertainty measure. Finally, an information fusion method based on the new uncertainty measure is proposed. The validity and rationality of the proposed method are verified by two classification experiments from UCI data sets.

Keywords