Journal of Materials Research and Technology (Sep 2021)
Characterization and fire protection properties of rubberwood biomass ash formulated intumescent coatings for steel
Abstract
Rubberwood biomass ash (RWA), which was derived from the combustion of rubberwood biomass in a fuel factory, was obtained for reuse as a natural mineral filler substitute in water-based intumescent coatings. The specific surface area of the RWA was 3.10 m2/g, with the particle's surface areas predominant composed of mesopores, which was justified using the Brunauer–Emmett–Teller Test (BET). Rubberwood ash coatings (RWAC) formulated with 3.0 wt% RWA exerted the most homogenous and durable surface matrix in the Accelerating Weathering Test (AWT). Fire-resistant test (FRT) and thermogravimetric analysis (TGA) demonstrated the incorporation of the RWA with the intumescent flame-retardant formulation, generated positive effects in equilibrium end temperature, thermal decomposition, and weight loss reductions. These effects are most prominent in the RWAC-3, which was comprised of 3 wt% RWA, and 50/40/7 wt% vinyl acetate (VA)/intumescent flame retardant additive (IFRA)/pigment. The RWAC-3 showed the lowest equilibrium end temperature at 131.4 °C, the lowest thermal degradation at 71 wt%, and the highest carbonaceous char formation at 12.8 mm. The Surface Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDX) results exhibited a dense, compact, and coherent char formation for the RWAC-3 sample. The abundant O and P crosslinking structures in the RWAC-3 contributed to the quality of the char barrier. These results are supported by the evidence from Fourier-Transform Infrared Spectroscopy (FTIR), and X-Ray Diffractometer (XRD), which revealed the stretching of the O–H, P–O–C, and PO molecular functional groups, and the presence of thermally stable phosphate compounds in the RWAC-3.