Cell Communication and Signaling (Jun 2024)

Biomechanics of circulating cellular and subcellular bioparticles: beyond separation

  • Behrouz Aghajanloo,
  • Hanieh Hadady,
  • Fatemeh Ejeian,
  • David W. Inglis,
  • Michael Pycraft Hughes,
  • Alireza Fadaei Tehrani,
  • Mohammad Hossein Nasr-Esfahani

DOI
https://doi.org/10.1186/s12964-024-01707-6
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 24

Abstract

Read online

Abstract Biomechanical attributes have emerged as novel markers, providing a reliable means to characterize cellular and subcellular fractions. Numerous studies have identified correlations between these factors and patients’ medical status. However, the absence of a thorough overview impedes their applicability in contemporary state-of-the-art therapeutic strategies. In this context, we provide a comprehensive analysis of the dimensions, configuration, rigidity, density, and electrical characteristics of normal and abnormal circulating cells. Subsequently, the discussion broadens to encompass subcellular bioparticles, such as extracellular vesicles (EVs) enriched either from blood cells or other tissues. Notably, cell sizes vary significantly, from 2 μm for platelets to 25 μm for circulating tumor cells (CTCs), enabling the development of size-based separation techniques, such as microfiltration, for specific diagnostic and therapeutic applications. Although cellular density is relatively constant among different circulating bioparticles, it allows for reliable density gradient centrifugation to isolate cells without altering their native state. Additionally, variations in EV surface charges (-6.3 to -45 mV) offer opportunities for electrophoretic and electrostatic separation methods. The distinctive mechanical properties of abnormal cells, compared to their normal counterparts, present an exceptional opportunity for diverse medical and biotechnological approaches. This review also aims to provide a holistic view of the current understanding of popular techniques in this domain that transcend conventional boundaries, focusing on early harvesting of malignant cells from body fluids, designing effective therapeutic options, cell targeting, and resonating with tissue and genetic engineering principles. Graphical Abstract This review provides a comprehensive and clear overview of the size/shape, stiffness, density, and electrical properties of circulating cellular/noncellular

Keywords