Geoscientific Model Development (Aug 2018)

A global scavenging and circulation ocean model of thorium-230 and protactinium-231 with improved particle dynamics (NEMO–ProThorP 0.1)

  • M. van Hulten,
  • M. van Hulten,
  • J.-C. Dutay,
  • M. Roy-Barman

DOI
https://doi.org/10.5194/gmd-11-3537-2018
Journal volume & issue
Vol. 11
pp. 3537 – 3556

Abstract

Read online

In this paper we set forth a 3-D ocean model of the radioactive trace isotopes 230Th and 231Pa. The interest arises from the fact that these isotopes are extensively used for investigating particle transport in the ocean and reconstructing past ocean circulation. The tracers are reversibly scavenged by biogenic and lithogenic particles.Our simulations of 230Th and 231Pa are based on the NEMO–PISCES ocean biogeochemistry general circulation model, which includes biogenic particles, namely small and big particulate organic carbon, calcium carbonate and biogenic silica. Small and big lithogenic particles from dust deposition are included in our model as well. Their distributions generally compare well with the small and big lithogenic particle concentrations from recent observations from the GEOTRACES programme, except for boundary nepheloid layers for which, as of today, there are no non-trivial prognostic models available on a global scale. Our simulations reproduce 230Th and 231Pa dissolved concentrations: they compare well with recent GEOTRACES observations in many parts of the ocean. Particulate 230Th and 231Pa concentrations are significantly improved compared to previous studies, but they are still too low because of missing particles from nepheloid layers. Our simulation reproduces the main characteristics of the 231Pa∕230Th ratio observed in the sediments and supports a moderate affinity of 231Pa to biogenic silica as suggested by recent observations relative to 230Th.Future model development may further improve understanding, especially when this will include a more complete representation of all particles, including different size classes, manganese hydroxides and nepheloid layers. This can be done based on our model as its source code is readily available.