Drug Design, Development and Therapy (May 2020)

Inhibitory Effect of Lygodium Root on the Cytochrome P450 3A Enzyme in vitro and in vivo

  • Zhou Y,
  • Hua A,
  • Zhou Q,
  • Geng P,
  • Chen F,
  • Yan L,
  • Wang S,
  • Wen C

Journal volume & issue
Vol. Volume 14
pp. 1909 – 1919

Abstract

Read online

Yunfang Zhou,1,* Ailian Hua,2,* Quan Zhou,1 Peiwu Geng,1 Feifei Chen,1 Lianhe Yan,1 Shuanghu Wang,1 Congcong Wen3 1The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, Zhejiang 323000, People’s Republic of China; 2Department of Pharmacy, The First People’s Hospital of Yuhang District, Hangzhou, Zhejiang 311100, People’s Republic of China; 3Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, Zhejiang 325027, People’s Republic of China*These authors contributed equally to this workCorrespondence: Shuanghu WangThe Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui 323000, Zhejiang, People’s Republic of ChinaEmail [email protected] WenLaboratory Animal Centre, Wenzhou Medical University, Wenzhou, Zhejiang 325027, People’s Republic of ChinaTel/ Fax +865782780081Email [email protected]: The aim of the present study was to investigate the interactions of the main components of Lygodium root (ie, p-coumaric acid, acacetin, apigenin, buddleoside and Diosmetin-7-O-β-D-glucopyranoside) with cytochrome P450 3A enzyme activity both in vitro and in vivo.Methods: In vitro inhibition of drugs was assessed by incubating rat liver microsomes (RLMs) with a typical P450 3A enzyme substrate, midazolam, to determine their 50% inhibitory concentration (IC50) values. For the in vivo study, healthy male Sprague Dawley rats were consecutively administered acacetin or apigenin for 7 days at the dosage of 5 mg/kg after being randomly divided into 3 groups: Group A (control group), Group B (acacetin group) and Group C (apigenin group).Results: Among the five main components of Lygodium root, only acacetin and apigenin showed inhibitory effects on the cytochrome P450 3A enzyme in vitro. The IC50 values of acacetin and apigenin were 58.46 μM and 8.20 μM, respectively. Additionally, the in vivo analysis results revealed that acacetin and apigenin could systemically inhibit midazolam metabolism in rats. The Tmax, AUC(0-t) and Cmax of midazolam in group B and group C were significantly increased (P< 0.05), accompanied by a significant decrease in Vz/F and CLz/F (P< 0.05).Conclusion: Acacetin and apigenin could inhibit the activity of the cytochrome P450 3A enzyme in vitro and in vivo, indicating that herbal drug interactions might occur when taking Lygodium root and midazolam synchronously.Keywords: Lygodium root, drug–drug interactions, rat liver microsomes, midazolam, metabolism

Keywords