Results in Engineering (Dec 2023)

Decoration of spherical Sb2S3 over CuO nanoflakes for efficient photoelectrochemical hydrogen generation

  • Mohit Kumar,
  • Aishwarya Singh,
  • Bhagatram Meena,
  • Pravat Kumar Sahu,
  • Challapalli Subrahmanyam

Journal volume & issue
Vol. 20
p. 101513

Abstract

Read online

Developing an efficient photocathode system from earth abundant materials is essential for effectual Photoelectrochemical (PEC) water splitting. Charge transfer between heterojunctions is important in fabricating a novel photocathode, keeping cost-effectiveness, abundance, and PEC performance in mind. The p-type narrow band gap photocathode, CuO (Eg = 1.5 eV) synthesized by hydrothermal method, was decorated with Sb2S3 Nanospheres (NSs) by adopting a facile chemical bath deposition (CBD) procedure to fabricate CuO/Sb2S3 NSs heterojunction. Fabricated heterojunction showed better PEC performance contrary to bare CuO, improvement in photocurrent density CuO/Sb2S3 NSs (J = −1 mA cm−2) than CuO (J = −0.3 mA cm−2) photoelectrode at 0 VRHE in 0.5 M Na2SO4 (pH 6.85) is due to enhanced charge carrier generation/separation. The photostability of CuO/Sb2S3 remains intact for 2.5 h with no degradation in photocurrent density. Sb2S3 works as a sensitizer, diminishing the recombination rate of the e−/h+ in CuO/Sb2S3 NSs. UV–Visible and photoluminescence(PL) emission spectra results suggested CuO/Sb2S3 enhanced absorption spectrum and reduced rate of recombination. Electrochemical impedance spectroscopy studies show less charge transfer resistance for CuO/Sb2S3 NSs than CuO. This finding will pave new path in developing novel photocathodic material configurations and heterojunction with Cu-based binary oxides/chalcogenides for solar harvesting.

Keywords