International Journal of Molecular Sciences (Nov 2018)

Fungal Immunomodulatory Protein from <i>Nectria haematococca</i> Suppresses Growth of Human Lung Adenocarcinoma by Inhibiting the PI3K/Akt Pathway

  • Yingying Xie,
  • Shuying Li,
  • Lei Sun,
  • Shujun Liu,
  • Fengzhong Wang,
  • Boting Wen,
  • Lichao Sun,
  • Xiangdong Fang,
  • Yushuang Chai,
  • Hao Cao,
  • Ning Jia,
  • Tianyi Gu,
  • Xiaomin Lou,
  • Fengjiao Xin

DOI
https://doi.org/10.3390/ijms19113429
Journal volume & issue
Vol. 19, no. 11
p. 3429

Abstract

Read online

Lung cancer is a common disease that is associated with poor prognosis. Fungal immunomodulatory protein from Nectria haematococca (FIP-nha) has potential as a lung cancer therapeutic; as such, illuminating its anti-tumor mechanism is expected to facilitate novel treatment options. Here, we showed that FIP-nha affects lung adenocarcinoma growth ex vivo and in vivo. Comparative quantitative proteomics showed that FIP-nha negatively regulates PI3K/Akt signaling and induces cell cycle arrest, autophagy, and apoptosis. We further demonstrated that FIP-nha suppresses Akt phosphorylation, leading to upregulation of p21 and p27 and downregulation of cyclin B1, cyclin D1, CDK2, and CDK4 expression, ultimately resulting in G1/S and G2/M cell cycle arrest. Meanwhile, FIP-nha-induced PI3K/Akt downregulation promotes A549 apoptosis by increasing the expression ratio of Bax/Bcl-2 and c-PARP and autophagy by decreasing the phosphorylation of mTOR. Thus, we comprehensively revealed the anti-tumor mechanism of FIP-nha, which inhibits tumor growth by modulating PI3K/Akt-regulated cell cycle arrest, autophagy, and apoptosis, and provided the basis for further application of fungal immunomodulatory proteins, especially FIP-nha.

Keywords