Impact of Alternative Stabilization Strategies for the Production of PAN-Based Carbon Fibers with High Performance
Spyridon Soulis,
George Konstantopoulos,
Elias P. Koumoulos,
Costas A. Charitidis
Affiliations
Spyridon Soulis
Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology (R-Nano Lab), Material Science and Engineering Department, School of Chemical Engineering, National Technical University of Athens, GR-15780 Zographou, Greece
George Konstantopoulos
Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology (R-Nano Lab), Material Science and Engineering Department, School of Chemical Engineering, National Technical University of Athens, GR-15780 Zographou, Greece
Elias P. Koumoulos
Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology (R-Nano Lab), Material Science and Engineering Department, School of Chemical Engineering, National Technical University of Athens, GR-15780 Zographou, Greece
Costas A. Charitidis
Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology (R-Nano Lab), Material Science and Engineering Department, School of Chemical Engineering, National Technical University of Athens, GR-15780 Zographou, Greece
The aim of this work is to review a possible correlation of composition, thermal processing, and recent alternative stabilization technologies to the mechanical properties. The chemical microstructure of polyacrylonitrile (PAN) is discussed in detail to understand the influence in thermomechanical properties during stabilization by observing transformation from thermoplastic to ladder polymer. In addition, relevant literature data are used to understand the comonomer composition effect on mechanical properties. Technologies of direct fiber heating by irradiation have been recently involved and hold promise to enhance performance, reduce processing time and energy consumption. Carbon fiber manufacturing can provide benefits by using higher comonomer ratios, similar to textile grade or melt-spun PAN, in order to cut costs derived from an acrylonitrile precursor, without suffering in regard to mechanical properties. Energy intensive processes of stabilization and carbonization remain a challenging field of research in order to reduce both environmental impact and cost of the wide commercialization of carbon fibers (CFs) to enable their broad application.